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and amplitudon relaxation mechanisms in structurally 
incommensurate Rb,ZnC14 

J DolinSek, T Apih and R Blinc 
Jozef Stefan Institute, University of Ljubljana, Jamova 39, 61 111 Ljubljana, Slovenia 

Received 6 August 1991, in final form 14 February 1992 

AbshcL In sUucturally incommensurate systems phason and amplitudon thermal Auc- 
tuatiom of the frozen-in modulation wave provide for two different nuclear magnetic 
resonance (Nm)  spin-lattice relaxation mechanisms. These two relaxation mechanisms 
influence different pam of the inhomogenwusly bmadened NMR absorption spectrum 
diffemlly. They can be resolved in principle by a mnventional onedimensional mea- 
surement of the spin-lattice relaxation time Ti wer the NMR lineshape. Here we show 
that a twodimensional NMR spin-lattice relaxation technique provides a vuy convenient 
way of determining the variation of TI mer  the lineshape by the use of normalied 
contour plots. The mul t s  for the central transition of *'Rb in RhZoC4 show that 
the measured phason-induced spin-lattice relaxation time is temperature-independent. 
The much less efficient amplitudon relaxation mechanism b bypassed in pan by the 
mss-relaxation process of the amplitudon-relaxed pam to the phason-relaxed pam of 
the NMR lineshape. The theoretical prediction for Uie total variation of TI over the 
lineshape for the cross-relaxation p:ocess agrees with the experimental value of 3. 

1. Introduction 

Structurally incommensurate (INC) systems are characterized by the modulation of 
some local atomic property, which varies in space in such a way that its periodicity is 
an irrational fraction of the periodicity of the host lattice. The modulation is a result 
of an instability of the high-temperature phase against a soft mode with a critical 
wavevector q,, which is shifted by a small amount from a commensurate value qc, 

41 = qc(1 - A )  A < 1 (1) 

where A is temperature-dependent. With decreasing temperature, A tends to zero 
and the lost lranslational periodicity is recovered at the 'lock-in' transition (Bruce 
and Cowley 1918), where the crystal again becomes commensurate (c). 

The frozen-in incommensurate modulation wave is not completely static, but un- 
dergoes thermal fluctuations in phase and amplitude. In the plane-wave limit, where 
the wavelength of the modulation wave is much longer than the interatomic distances, 
a onedimensional modulation wave can be described by a displacement U 
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The excitation spectrum (figure 1) consists of two modes (kumer and Blinc 1981). 
The first is the amplitudon branch and corresponds to ascillations of the amplitude 
of the displacement, A( t )  = A, + 6 A ( t ) ,  and behaves like an ‘optic-like’ phonon. 
The dispersion relation is 

(3) uik = 2a(TI - T )  + ICkz 

where a = constant and k = q - ql. The second is the ‘acousticlike’ phason branch, 
which corresponds to oscillations of the phase of the modulation wave, +(c, t )  = 
&(z) + &$(cr,t), with the dispersion relation 

wgk = A $  + K k 2 .  (4) 

Here A+ represents the phason gap (Bruce and Cowley 1978, Bruce 1980, Blinc el a1 
1985a, 1986), induced by the pinning of the modulation wave to impurities and by the 
discrete lattice and commensurability effects. In the strong pinning limit (Blinc el ul 
1986), which should hold for the nominally pure crystals, the phason gap is expected 
to be temperature-independent, A, + f ( T ) .  This is in contrast to the amplitudon 
gap (the first term on the right-hand side of (3)), which for k = 0 depends on 
temperature as A, o( (TI - T)’12. 

In nuclear magnetic resonance (NMR) the phason and amplitudon excitations 
represent two kinds of relaxation mechanisms in the INC phase for nuclei with non- 
zero electric quadrupole moment (Tumer and Blinc 1981). The phason branch is very 
effective in the relaxation process since its frequencies can come in the range of the 
nuclear Larmor frequency, thus providing a strong relaxation mechanism. In an ideal 
INC phase with no defects, the phason frequencies would even become q u a l  to zero, 
reflecting the fact that the energy of an INC system is independent of the phase of the 
modulation wave. In a real crystal, dislocations and other types of impurities induce 
a finite phason gap, which in Rb,ZnCI, has been estimated (Blinc d 01 198%) to 
be of the order l o l l  s-l. Phason-induced spin-lattice relaxation time T,+ is directly 
proportional to the phason gap (Blinc el a1 1985a) and thus temperature-Independent, 

T;bl = Cr,/A, (5) 

Here r, is the phason damping constant. The amplitudon-induced spin-lattice relax- 
ation time, on the other hand, reflects the temperaturedependent energy gap A, in 
the amplitudon spectrum, 

where A, = [2a(Tr - 731’1’ in the mean-field approximation and ra is the ampli- 
tudon damping constant. A, is of the order of a phonon frequency at temperatures 
different from the paraelectric-INC transition temperature TI. 

The technique for the separation of phason and amplitudon contributions to the 
spin-lattice relaxation rate for quadrupolar nuclei (%mer and Blinc 1981, Blinc et 
a1 1985a, b) consists of measuring the variation of spin-lattice relaxation time over 
the inhomogeneous frequency distribution. This distribution is an inhomogcneously 
broadened absorption spectrum limited by two edge singularities. It directly reflects 
the spatial variation of the modulation wavc since it modulates the local electric field 
gradient (EFG) and thus the electric quadrupole interaction of nuclei, lying on the 
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Figure l. A schematic representation of he tem- 
perature dependence of lhe incommensurate soft 
mode, the amplitudon and the phason. 

w - wg I 
Figure 2 Static inmmmensurare NMR Lineshape 
f ( w )  and temperature dependence of splitting of 
the edge singularities A w  for a linear erpansion of 
frequency versus displacement. 

modulation wave. Each element of the EFG tensor at a particular nuclear site can 
be expanded in powers of the nuclear displacements U( z )  from the positions in the 
paraelectric unit cell. The quadrupole perturbed nuclear resonance frequency of a 
given nucleus w can also be expanded in powers of the displacements around the 
paraelectric value wo, 

w = W O  -I- au(z) -I- .". (7) 

The frequency distribution function, which determines the NMR lineshape, is in the 
constant-amplitude approximation (slinc 1981) for the static case given by (Blinc ef 
a1 1985b) 

By taking only the linear term in the expansion (7). replacing U( z )  with U( z )  = 
Acos  4(z )  and defining CJ = aA,  we get for f ( w )  

constant 
f ( w )  = 11 - [ ( w - w o ) / L j ] 2 } 1 / 2 '  (9) 

f ( w )  exhibits two edge singularities at w = &CJ (figure 2). The splitting between the 
singularities increases with temperature as A w  = ZG o( A o( ( A T ) @ .  The measured 
NMR lineshape is a convolution of the frequency distribution function f ( w )  with the 
homogeneous lineshape L(w) ,  

m 

F ( w )  = 1, f (w,)L(w - w,) dw,. (10) 

The intensities of the edge singularities come from the nuclei that lie in the vicinity 
of the extrema of the modulation wave. The nuclei that lie in the region where the 
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amplitude of the modulation wave is small contribute to the intensity in the middle 
of the spectrum. These two different ‘types’ of nuclei have different relaxation mech- 
anisms. The nuclei near the extrema of the modulation wave lie in the region where 
the amplitude fluctuations are large and are thus relaxed mainly via amplitudons. The 
nuclei that lie far away from the extrema, where the amplitude is small, experience 
mainly phason fluctuations and are thus relaxed by phasons. Measuring the effective 
spin-lattice relaxation rate over the inhomogeneous frequency distribution thus en- 
ables one in principle to determine separately the phason and amplitudon relaxation 
contributions. In the simplest case, when we assume a local relation (Blinc 1981) 
between the resonance frequency and the displacement, wi = w(u(z;)) ,  and neglect 
the contributions to the frequency shift from nuciei at positions other than zir we get 
for the effective spin-lattice relaxation rate (Bliic et 01 1985b) 

(11) 

Here X = cos +(z) = (w-wa)/G represents the normalized frequency. Expression 
(11) enables one to extract the phason T!+ and T,, contributions &om the analysis 
of the variation of the spin-lattice relaxatton time over the inhomogeneous lineshape 
(equation (9)). At the edge singularities X = ~!=1 one expects to get the pure 
amplitudon contribution T,,, which is temperature-dependent as 

in the mean-field approximation. In the centre of the spectrum where X = 0, on 
the other hand, one gets the pure phason contribution, which is independent of 
temperature and directly proportional to the phason gap, 

By lowering the temperature through the incommensuratecOmmensurate transition 
T, the phason relaxation time Tl+ should jump discontinuously to a much larger 
value, which expresses the fact that there are no longer phasons in the commensurate 
phase. The amplitudon relaxation time T,, should, however, grow continuously 
throughout the whole MC phase and match continuously the commensurate value 
(figure 1). 

In our previous experiments on RbJnCI, (Blinc el af 1986) and [N(CH,),]zZnCI, 
(Blinc et ai 1985a) an attempt was made to resolve experimentally TI, and TI+ 
via equations (11) and (9). The analysis of variation of the effective TI over the 
lineshape behaved qualitatively correctly. T, was the shortest in the middle of the 
spectrum. This contribution was also temperature-independent, so that we believe 
that we measured the phason contribution Tl+ correctly. The T, value measured on 
the edge singularities was slightly longer than T16. The difference was, however, only 
a factor of about 2, which is much smaller than expected from the phason-amplitudon 
picture. It was also temperature-independent, except in the vicinity of the para-INC 
transition temperature T,, where it showed a critical dependence proportional to (TI- 
T)@. Both contributions are shown for Rb,ZnCI, in figure 3. The small difference 
between the two relaxation times and the temperature independence of the relaxation 
time, measured at the sinylarities, show that this relaxation contribution does ngt 

I 
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behave like the theoretically predicted amplitudon contribution T, A .  TIA should 
grow continuously throughout the INC phase and smoothly match the Tl value of the 
commensurate phase at T,. We thus believe that the relaxation time thus determined 
is not the pure T,, contribution. Similar results were found in [N(CH,),],ZnCI,. 
The measurements were made with the inversion recovery technique. The pulse 
sequence used was a three-pulse z-A-z/2-r-~-r-t sequence with a z /2  pulse 
length of 5 ps. Here the last two pulses form an echo to overcome the receiver dead- 
time problems and A is the relaxation delay. Some 20 relaxation delays were taken, 
the longest delay being about 5T1. No phase cycling procedure to compensate the 
pulse errors was applied to the above sequence. Further analysis of the experimental 
data to extract the T, values was made by z simple ‘ruler and eye’ technique on 
semi-log paper. This accounts for the discrepancy by a factor of about 2 in the TI+ 
values determined from these early measurements and the more precise ones to be 
described below. 

I 
I PARA 
! #.-- I 

Figurc 3. Temperature dependence of spin-lattice 
relaxation lime T,, measured on die central tran- 
sition 112 -, -112 of 87Rb in RbzZnCI* at an 
orientation D I Ho, / ( e ,  Ho) = 122‘. In the 
I N C  phase mosses represent the pliason mntribu- 
tion T I ,  and open circles represent T I ,  measured 
at &e edge singularities, where L e  amplitudon re- 
laxation, is expected to k dominanl. rile inset 
shows the temperature dependence of splitting of 
the edge singularities. 

To elucidate the question of why we do not get the amplitudon contribution cor- 
rectly, we decided to make a high-resolution two-dimensional spin-lattice relaxation 
study of ”Rb in Rb,ZnCI,. The use of normalized two-dimensional (2D) contour 
plots provides an extremely sensitive way to determine, and a convenient way to dis- 
play, the variation of spin-lattice relaxation time over the absorption spectrum. This 
ZD technique will be described in the next section. 

2. Two-dimensional spin-lattice relaxation in incommensurate systems 

The use of a 2~ relaxation technique with normalized contour plots (Millhauser and 
Freed 1984) has been applied to deuterons (I = 1) in liquid-clystalline polymers 
(Schleicher er a1 1989, 1990, Muller er a1 1990). The name ‘two-dimcnsional relax- 
ation’ is somewhat misleading, since this is not a two-dimensional NMR experiment in 
the usual sense. There we look for the absorption of the spin system as a function 
of two frequency variables. In a two-dimensional relaxation experiment, only one 
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dimension shows the absorption as a function of a frequency variable, whereas the 
second dimension shows the Fourier transform of a magnetization recovery curve. 

In the 2~ spin-lattice relaxation technique, applied to incommensurate systems, 
one tries to get the variation of the spin-lattice relaxation time TI over the inhomoge- 
neously broadened absorption spectrum. Tl = T,(u) depends on the displacement U 
of the given nucleus on the modulation wave. At the beginning of the pulse sequence 
we prepare the spin system in a non-equilibrium state, e.g. we invert the population 
with a single 7r pulse. The system then relaxes towards equilibrium in the evolution 
period t l ,  

where p is the density operator. The solution at time t = f, is 

P(f l )  = Peq + [ d o )  -p ,qlexl~I-~l /Tl(u) l .  (15) 

The amplitude of the signal at the beginning of the detection period will be for 
,401 = -1, 

A( I ,  , U) = Io{ 1 - 2 exp[ - t ,  /TI (U)]}. (16) 

At the end of the evolution period we apply a 'read' n/2 pulse and observe in the 
detection period 1 ,  the normal free induction decay (FID). For I > 1/2 this is a 
quadrupole-perturbed Zceman signal. The signal can be written as 

S(f,,t,,u) = A(t,,u)g(t,).  (174 

Here g(t2) rcpresents the signal of all nuclei with distributed resonance frequencies 
w = w,, + G X .  Here X = cos +( z) lies in the interval [-1,1]. The probability dis- 
tribution C ( X )  k obtained from the equation C(X)dX = n(z) dz =constant dz, 
where n(x) represents a constant density of nuclei along the modulation wave. The 
signal g ( t 2 )  can be written as 

First we make a Fourier transform over the 1,  variable and get 

s ( f i , w z ~ ~ l )  = A(ti ,u)F(w,)  ('8) 

where F ( w 2 )  is given by equation (IO). Then we subtract the spectrum S ( t ,  = 
m , w 2 , u )  from the signal (18) and get 

Here we took for simplicity an infinitely sharp homogeneous lineshape L ( w ) ,  thus 
making F(w,) equal to f (w2)  (equation (9)). Introducing X = (w2 - w o ) / G ,  we 
make the second Fourier transform over the 1, variable and get for the real part 
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Since T,(u) is a function of A' via u = A c o s + ( z )  = AA' (equation (11)) we get 
finally 

Equation (21) shows that the lineshape in the w1 domain is a Lorentzian with a half 
width at half height (HWHH) l/Tl+ at the centre Of the spectrum S = 0 and HWHH 
l/TIA at the edge singularities X = &l. 

In a real experiment, performed on the central transition 112 - -112 of 
87Rb(I = 312)  nuclei, we used a three-pulse sequcnce ?r-tl-11/2-r-r-r-t2, where 
the second and third pulses form an echo sequence to overcome the receiver dead- 
time problems. The detection period t, thus starts at the top of the echo. The x / 2  
pulse length was 5 ps. A suitable phase cycling was used to minimize the pulse errors. 
The first ?r pulse was cycled in steps +A' and -X and the signals added in order 
to get the magnetization immediately after the pulse pointing exactly along the - Z  
direction. The last pulse was also cycled in steps tX and - X  and the signals 
co-added in order to get rid of the remaining FID after the last pulse. Cyclops phase 
cycling (Hoult and Richards 1975) was used in addition to minimize the errors of the 
quadrature detection, so that one complete phase cycle involved 16 steps. 

Since the signal is amplitude-modulated only with no phase modulation in the 
t ,  domain, it is possible to get a pure absorption 2D spectrum by applying a real 
Fourier transformation to the 1 ,  domain. The two copies of the absorption spectrum 
at +w, are both centred at w, = 0 and fall exactly on each other, so there is no 
need to split them by the use of the 'time-proportional phase increments' (TPPI) 
method (Bodenhausen et al 1980). The me of the phase-sensitive, pure absorption 
2D spectrum is an essential point in a study of the variation of '7, over the spectrum, 
since the ZD spectrum is not distorted as it is in the magnitude or phase-sensitive 
mixed-phase mode. After both Fourier transformations, a normalized contour plot 
was made (Millhauser and Freed 1984) by dividing all slices along w2 by the centre 
slice at wl = 0. The centre normalized contour thus becomes a straight line of 
value 1. The deviation of other contours at w, + 0 &om the straight lines is a very 
sensitive tool to observe the variation of TI over the absorption line. Here it should 
be pointed out that this ZD normalized contour plot technique yields in principle 
no additional or more precise information to what is obtained in a conventional ID 
spin-lattice relaxation measurement. It represents a convenient way to display the 
variation of TI over the lineshape. Its high precision is due to the fact that we are 
using a large number (e.g. 7-56) of closely spaced relaxation delays, with the longest 
delay extending up to many (e.g. U) times the longest relaxation time constant met in 
the experiment. The high sensitivity is, on the other hand, due to the normalization 
procedure-iivision of all slices along w2 with the central slice at w1 = 0. Such a 
division is more sensitive to the variation of TI over the lineshape. 

3. Results and discussion 

A ZD spin-lattice relaxation study has been performed on the central transition 
112 - -112 of "Rb in Rb,ZnCI, at an orientation n I H ,  and L ( c ,  H,) = 122". 
The nystallographic axes are taken in a system in which the 6 axis becomes the 
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axis of spontaneous polarization below T,. At this particular orientation it has been 
shown (Blinc el a1 1986) from the temperature dependence of splitting of the edge 
singularities that the expansion of resonance frequency in powers of the displace- 
ments (equation (7)) is well described by retaining the linear term only. Such a 
linear expansion gives the same results (Blinc ef a1 1985b) in the local and non-local 
approximations. The term ‘local approximation’ is used for the case when the fre- 
quency of a given nucleus depends only on the incommensurate displacement of the 
resonating nucleus and the displacements of the ions moving in phase with it. This 
approximation is valid only when the wavelength of the modulation wave is large 
compared to the size of the region from which comes the dominant contribution to 
the NMR frequency. When this condition is not fulfilled, the relation between the 
resonance frequency and the nuclear displacements becomes non-local, Le. a given 
nucleus ‘sees’ in principle all the ions in the clystal. The chosen orientation thus en- 
abled us to treat the problem quite generally. The measurements were performed at 
three diflerent temperatures. The first was taken at T = 18 OC, which is one degree 
below the para-incommensurate transition temperature (T, = 29 “c). On figure 4(a) 
a ZD contour plot (not normalized) of the spectrum at T = 18 T is shown, where the 
w2 domain shows the normal incommensurate lineshape and the wI domain shows 
the Fourier transform of the magnetization recovery cum. The cross sections si = 0 
and w2 at the position of the left edge singularity arc shown above and on the left 
side of the contour plot respectively. The normalized contour plot (the contour plot 
from figure 4(0) with all slices along w2 divided by the central slice w, = 0) is 
shown on figure 4(b). Figures 5(a, b) and 6(a, b)  show the corresponding spectra at 
T = 13.7T and T = -22oC, the last one already lies in the temperature regime 
where the plane-wave approximation starts to break down and the description of a 
soliton wave starts to become appropriate. In all three cases, the number of relaxation 
delays (number of points sampled in the t ,  domain) was 256, covering the range up 
to 320 ms, which is around 25 times longer than the longest time constant met in the 
experiment. On the normalized contour plots the contours are drawn at 100, 85, 70, 
55, 40, 25 and 10% of maximum height. The maximum variation of the spin-lattice 
relaxation time over the lineshape is given by the total span of the contours at certain 
height in the w1 dimension. As can be seen from figures 4(b), 5(b) and 6(b), this 
variation is the same for all three temperatures. By making a theoretical fit (figure 7) 
with equation (21) we get the ratio T,,/T,+ = 3.01, so that the relaxation time, 
measured at the edge singularities, is three times longer than the one in the middle 
of the spectrum. 

So far the experimental data of the variation of relaxation time over the lineshape 
did not involve any model calculation or ansae for fitting the TI curves. We did not 
even have to h o w  the absolute value of any of the time constants involved. The total 
variation of T, over the lineshape is thus a pure experimental outcome and so the 
above-described normalized contour plot ZD method can be treated as the ‘honest’ 
way for such studies. 

The value of TIm is found lrom the linewidth at half height in the w1 domain at 
such an w2 position that the normalized contour plot is the broadest. For T = 2 8 T  
we get TI+ = 4.6 ms, for T = 13.7% TI+ = 4.5 ms and for T = -22OC, 
T tS  = 4.2 ms. 

These precise measurements thus gave results on the total mriation of TI over 
the incommensurate lineshape, which are not much different from the early ones 
(figure 3), which were obtained by a simpler technique. Two experimental facts are 
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Fwre 4 (a) A m mntour plot of B7Rb 'spin- 
lattice melaxation' speelrum in R b z Z n Q  at T = 
2 8 T  and uo(&'Rb) = 88.34 MHz. The w2 
domain shows inmmmensurnte NMR lineshape and 
the w1 domain shows the Fourier transform of 
the magnetization recovery curye. 130s sections 
w1 = 0 and y a1 the position of the edge singu- 
larity w z / Z a  = 3500 Hz are shown above and on 
the left side of the mnmur plot respectively. (b) 
Normalized mntour plot at T =  28 T (same plot 
as above but all em5s Seclions along w2 divided bj 
the central aoss section w1 = 0). Contours are 
drawn at 100% (cenue line), 85, 70, 55, 40, 25 and 
10% of maximum heighL 

imoo 5000 o -501 -lado 
q l 2 n  I H z I  

Figure 5. (a) A m mnlour plot of s7Rb 'spin- 
Lattice relaxation' spectrum in RbzZnCI, at T = 
13.7Taand v0(*'Rb) = 88.34 MHr. "he w2 do- 
main shows incommensurate tineshape and the W I  

domain s h m  the Fourier transform of lhe magne- 
tization movery cuwe. aoss sections W I  = 0 
and w2 at the position of the edge singularity 
y / Z r  = 7000 Hz are shown alave and on the 
left side of h e  mntour plot respectively. (b) Nor- 
malized mntour plot at T = 1 3 . 7 T  (Same plot 
as above bul al l  MSS Sections along w2 divided by 
the cmtral cross Section w1 = 0). Contour levels 
are Uie Same as on figure qb). 

now in favour of the statement that, with the method of measuring the variation of 
T, Over the lieshape for the quadrupole-perturbed &man lines, we measure the 
phason relaxation contribution correctly, but we do not measure correctly the ampli- 
tudon relaxation contribution. The first fact is that the phason contribution TI$ is 
short, temperature-independent and jumps at the INc-commensurate transition to a 
high value, since the phason niode is no longer present. The second fact is that at 
the edge singularities we obtain a TI that is also temperature-independent and onIy 
three times longer than Tl+. This obviously cannot be identified as the amplitudon 
relaxation time TIA, since T,, would behave as T,, D( (T, - T ) 1 / 2  and go smoothly 
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Figure 6 (U) A 2D conlour plot 01 "Rb 'spin- Figure 7. nieoretical normalized contour plot. 
laltice relaxation' spectrum in RbZnCIr at T = computed Imm equation (21) lor the m i o  
-22 T a n d  uD(*'Rb) = 88.34 MHz. n l e  w2 do- T,,,/TIu = 3. Contoun are drawn at 1133% (cen- 
main shows incommensurate lineshape and the w1 tre line). 85, 70, 55, 40, 25 and 10% of maximum 
domain shows the Fourier lranslom of the magne- height. Here X = (y - wO)/a is a normalized 
tization recovery curve. Cross sectiolls w, = 0 wg frequency. 
and wz a1 lhe position of the edge singularity 
w 2 / 2 w  = 10 000 Ha are shown above and on the 
left side of the contour plot respectively. (6) Nor- 
malized contour plot at T = -22% (same plot 
as above but all mu Sections along w2 divided by 
lhe Central mss section w, = 0). Contour levels 
are the same as on figure 4(b). 

through the INC phase to a cc"ensurate value. It is obvious that some other relax- 
ation mechanism bypasses the amplitudon mechanism. This could bc explained by the 
following simplified consideration. If the system of nuclear spins NrnS out of equi- 
librium, then those nuclci that see the phason fluctuations relax towards equilibrium 
with time mnstant TIS.  Except close to TI, TI+ is much shorter than TIA. The nuclei 
that are relaxed by amplitudon fluctuations see the phason-relaxed nuclei already in 
thermal equilibrium, i.e. they behave similarly to paramagnetic impurities. The mag- 
netic dipolar coupling between both lypes of nuclci then transfers the polarization 
from phason-relaxed to amplitudon-relaxed nuclei in a cross-relaxation process. This 
bypass relaxation mechanism would imply that the relaxation time of the nuclei, which 
are supposed to be relaxed nominally by amplitudons, would behave with temperature 
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in the same way as Tl+ with its value close to Tl+, as is also seen in the experiment. 
Fbr the cross-relaxation processes to occur frequently, one needs a considerable over- 
lap between the resonance lines of coupled nuclei. Tb see this in our use,  we made 
a ZD ‘separation of interactions’ experiment (DolinSek 1991). Here we get in the w 2  
frequency dimension a normal inhomogeneously broadened INC lineshape. This line- 
shape is a convolution of a static frequency distribution function f ( w )  (equations (8) 
and (9)), which describes the distribution of quadrupole-perturbed Zeeman frequen- 
cies of isolated nuclei, with the homogeneous lineshape L ( w )  (equation (IO)). The 
homogeneous lineshape L ( w )  is determined by the homonuclear dipolar interaction 
and is obtained in the w,  domain. L ( w )  determines the overlap between nuclei 
at different positions in the frequency distribution function and determines the effi- 
ciency of the cross-relaxation process. Our measurement was made at T = 16.2OC 
(figure 8). Fbr the inhomogeneous lineshape we found a full width at half height 
(FWHH) of 13 lcHz and for the homogeneous linewidth an FWHH of 500 Hz. Since the 
frequency distribution function f ( w )  is a continuous function of different resonant 
frequencies, the above overlap could provide a ‘bridge’ through all parts of the inho- 
mogeneous lineshape and enables the cross-relaxation process to transfer polarization 
from the centre of the line towards the edge singularities. 
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F i i u n  8. Two-dimensional ‘separation of interactions’ spectrum of 87Rb 112 - -1  / Z  
transition in RblZnCl+ a1 an orienralion a 1. Ho, L ( c ,  Ho) = 122’ and T = 16.2T. 
The wz domain shows the inhomogeneously broadened incommensurate linesliape and 
the W I  domain shows the homogeneous lineshape, determined by h e  homonuclear 
dipolar interaction of Rb nuclei. n l e  projections on both frequency axes are a l a  shown. 

A theoretical description of the cross-relaxation phenomenon mentioned above 
requires first a detailed consideration of the recovery of magnetization towards equi- 
librium for spin I = 3/2 for the case of pure quadrupolar relaxation. This should 
describe appropriately the pure phason and pure amplitudon relaxations, since it is the 
EFG tensor that becomes time-dependent by the phason and amplitudon fluctuations. 
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The energy levels of a quadrupolar nucleus I = 312 are in general not equidistant 
and the spin-lattice relaxation cannot be described by a single relaxation rate, but 
rather by two transition probabilities W ( ' )  and Wc2) describing the transitions of 
the magnetic quantum numbers Am = fl and A m  = k 2  respeaively. We write 
down the kinetic equations describing the time development of the deviations Arjz 
of the level populations V, defined as 7, = q,o + AV,, where qz0  represents the 
thermal equilibrium population of the ith level. The four kinetic equations (Abragam 
1961, h m e r  and Blinc 1981) can be solved analytically. When the central transition 
1/2 - -112 is irradiated only and the &3/2 levels stay unperturbed by the RF 
excitation field, we have the initial conditions after the pulse 

q 1 / 2 ( t  = 0) = q - l / z ( t  = 0 )  

Aq*3/2(t = 0) = O  

(saturation of central transition) 

(unperturbed f 3 / 2  levels). 

Fbr that pan of the magnetization that corresponds to f l / 2  levels only, we get 

( ~ 1 1 ~  - ~ - 1 , z ) ~  - ( V I I Z  - v - ~ / z ) o  = A[exp(-.ZW(')t) + e ~ p ( - 2 1 Y ( ~ ) t ) ]  (22) 

where A is a normalization constant This yields in general a two-exponential mag- 
netization recovery. Only for the case lV( l j  = W ( z )  do we get a single-exponential 
recovery and an effective T, can be defined. The two vansition probabilities W(l)  
and W(') depend strongly on orientation of the crystal with respect to the mag- 
netic field. One can compute W ( ' )  and M'(2) from the general theory of relaxation 
(Slichter 1980). For W( ' )  one gets 

+ATzy (0)ATzy(t)} exp( -2iw0t) d t 

Here E = e 2 Q / 4 1 ( 2 1  - l ) ,  qj denotes an element of the EFC tensor, wo is the 
nuclear Lamor frequency and the bar represents an ensemble average. At a certain 
orientation, the magnetization recovery originating from the pure phason or pure 
amplitudon relaxation mechanism should be either monoexponential or biexponen- 
tial, depending on the ratio W(' ) /W( ' ) ,  irrespective of where on the lineshape we 
measure it. If in the centre of the MC lineshape we obtain a monoexponential re- 
covery, the Same should hold everywhere on the absorption line, since the same EFG 
tensor elements contribute to relaxation. In our case we found in the middle of the 
spectrum a magnetization recovery that can be perfectly fitted by a single exponent 
(figure 9(a)). Thus at the chosen orientation one of the two transition probabilities 
W'(:) is dominating the other or they are accidentally very close to each other. We 
can also define an effective spin-lattice relaxation time T,,, which in this case (at 
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T = -22%) is equal to T,+ = 4.2 ms. On figure 9(b), the magnetization recovery 
function of one of the two edge singularities is shown together with the attempt to 
fit it with a monoexponential function. The fit is obviously bad. This deviation from 
monoexponentiality does not come from the quadrupolar relaxation, since in that 
case it should be present also in the other parts of the INC spectrum. The observed 
non-monoexponentiality is introduced by the cross-relaxation mechanism, which tries 
to relax the edge singularities via the phason-relaxed part of the absorption line. This 
we can describe by writing two coupled equations for the relaxation of phason- and 
amplitudon-relaxed nuclei, 

d(I,)+/dt = - ( l P 1 + ) ( ( I z ) +  - 104) ( S a )  

where ( I , ) +  = zz(Il)+ and index k runs over all phason-relaxed nuclei, to which 
an amplitudon-relaxed nucleus n is coupled in a cross-relaxation process. Here T:" 
represents the cross-relaxation time for the transfer of longitudinal spin polarization 
&om the phason-relaxed spin k to amplitudon-relaxed spin n. In equation ( S a )  
we neglect the 'bacB cross-relaxation since the phason relaxation mechanism is the 
dominant one. The amplitudon-relaxed nuclear spins see the phason-relaxed nuclei 
much like 'paramagnetic impurities'. The solution of equation (2%) is for the initial 
condition (1,(1 = O))+ = -Io+ the standard relation 

V,(t))+ = I O + P  - 2 e x P ( - t / T 1 + ) 1 .  

(r:(t))A - I;A = [ ( I ; ( O ) ) A  - Io"alexl,(-t/T,A)f(t) .  

(26) 

The solution of equation (256) can be found with the unsuh 

(27) 

When the initial condition is a complete inversion of both types of spins (of the same 
nuclear species) we get 

(r:(o))+ - I& = - 2 1 ~  06-- - 21 0 
( I ; ( o ) ) A  - IPA = -21;A = -21, 

out of which we find the initial condition f(0) = 1. The magnetization recovery 
function for ( I ; ( t ) ) A  becomes, dropping index n, 

x { exp [ -t (:+ ;A)]- '}]  

From equation (28) we can get an approximate result for the initial part of the 
magnetization recovery function by expanding the term e x p [ - t ( l / T l +  - l/T,A)] in 
series and retaining the linear term only. Writing z k ( l / T : )  = l/T;'" we get 
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and the magnetization of the amplitudon-relaxed nuclei grows towards equilibrium 
with the effective cross-relaxation time T', rather than with the amplitudon relax- 
ation time TIA.  The magnetization recovery function of the edge singularities can be 
well fitted with equation (28) (figure 9(c)). The fitting parameter Tff/TI4 = 2.88 
agrees rather well with the experimentally determined total variation of TI over the 
lineshape, which is equal to 3. The other fitting parameter Tl,/Tl+ does not affect 
the fit much and is thus determined rather imprecisely as a factor of around 10. This 
might also be affected by the repetition time of the pulse sequence, since for precise 
measurements one should repeat the sequence after as many as around 100 times the 
longest time constant of relaxation, for a proper thermal equilibrium to be reached, 
before a new sequence starts. It is interesting to compare the above results to the 
rcsults on pure 35Cl nuclear quadrupole resonance (NQR) (Chen and Ailion 1989, 
Milia and Papavassiliou 1989). There they have shown that in the INC phase T,+ is 
tcmperature-independent, whereas TI A is temperature-dependent, but its dependence 
on temperature is weaker than the theoretically expected T,, D: A, D: (i", - ") ' I2  
and docs not smoothly match the Tl value in the commensurate phase at the lock-in 
transition at T,. There it exhibits a jump of a factor of about 3 in a narrow tempera- 
ture interval. Close to T, the ratio TIA/Tl+ amounts to a factor 14, which is larger 
than in thc "Rb case shown in this paper. In the case of 35CI NQR cross-relaxation 
(due to its dipolar origin) should be less effective than in the 67Rb case since the 
cross-relaxation rate is proportional to the square of the dipolar coupling constant, 
and thus to the fourth power of the nuclear magnetic moment. Thc gyromagnetic 
ratio of the 35C1 nucleus is 3.3 times smaller than that of the "7Rb nucleus, which 
would make the cross-relaxation rate smaller by a factor of about 120. This is, in our 
opinion, the reason for a stronger temperature dependence of T,, in the 35CI NQR 
case. 

4. Conclusions 

We have shown that a 2~ spin-lattice relaxation technique allows for a precise deter- 
mination of a variation of thc spin-lattice relaxation time over the inhomogeneously 
broadened incommensurate lineshape. In the middle of the lineshapc, we obtain the 
phason relaxation time, whereas the edge singularities, which should be relaxcd by 
amplitudons, are relaxed via a cross-relaxation process to thc phason-relaxed part of 
the spectrum. This process bypasses-except close to T,-the amplitudon relaxation 
mechanism. This explains the fact that the relaxation time of the edge singularities 
follows the temperature behaviour of Tlq.  The experimentally obtained value for the 
total variation of Tl over the lineshape, which is a factor of 3.01, agrecs well with 
that obtained from a theoretical model for the cross-relaxation between amplitudon- 
and phason-relaxed parts of the spectrum, which yields a factor of 2.88. 

We are now able to make a more precise estimate of the phason gap A,, which 
was in our earlier paper (Bliic ef al 1985a) determined from "Rb NMR in Rb,ZnCI, 
from the ntio 

Tl+lTl* = A4/A,. 

There we have used an independently determined amplitudon gap A, (Petzelt 1981) 
and obtained from the measured values of Tls and TI, an estimate for As as 10"- 
~ O " S - ~ ~  As it now turns out, TI, was in fact not properly determined in view of 
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Figure 9. Magnetization remvey cuwe 
M ( t )  of 87Rb 112 3 -112 transi- 
lion in the inmmmensurate phase of 
RbzZnC4 at T = -22% DOIS rep- 
resent experimenlal p in t s  and [he full 
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taken at the centre of the inhomoge- 
neously broadened NMR lineshape, where 
the relaxation b mused hy lhe phason 
fluctuations. m e  full a w e  represents 
a fit with a monoexponential function 
exp( - t /T ,+ )  (TI+ = 4 . 2  ms). (6) 
M ( t )  laken ai one of the lwo edge sin- 
gularities together s i t h  the attempt lo 
fit it wilh a monoexponential function of 
the form e x p ( - t j T , ) .  ?he fit is no1 
good. (c) ?le same magnetization re- 

""..I I" " ....- I _".._. 

&very f&tion as in (6),-bul fitted with 
0 LO BO 120 160 equation (7.8). The fit b now good with 

c n / T , +  = 2.88. t[msl 

the cross-relaxation process qff. Since we have shown in this paper that the real 
TI,  is about four times longer than T:", we now get a corrected estimation for the 
phason gap to lie in the range A, U 101o-lO'l s-]. The correction factor and the 
effectiveness of the cross-relaxation process are of course different for different nuclei 
with different magnetic moments and different crystal structures. For "Rb the effects 
are much larger than for 39K or 35CI. This also explains the fact that smaller phason 
gaps were determined from than from "Rb TI data in the same clystal. 
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