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Absiract. In structurally incommensurate systems phason and amplitudon thermal fluc-
tuations of the frozen-in modulation wave provide for two different nuclear magnetic
resonance (NMR) spin—lattice relaxation mechanisms. These two relaxation mechanisms
influence different parts of the inhomogeneously broadened NMR absorption spectrum
differently. They can be resolved in principle by a conventional one-dimensional mea-
surement of the spin-lattice relaxation time T} over the NMR lineshape. Here we show
that a two-dimensional NMR spin-lattice relaxation technique provides a very convenient
way of determining the variation of T1 over the lineshape by the use of normalized
contour plots. The results for the central transition of 87Rb in Rb; ZnCly show that
the measured phason-induced spin-lattice relaxation time is temperature-independent.
The much less efficient amplitudon refaxation mechanism is bypassed in part by the
cross-relaxation process of the amplitudon-relaxed parts to the phason-relaxed parts of
the NMR lkineshape, The theoretical prediction for the iotal variation of T} over the
lineshape for the cross-relaxation process agrees with the experimental value of 3.

1. Introduction

Structurally incommensurate (INC) systems are characterized by the modulation of
some local atomic property, which varies in space in such a way that its periodicity is
an irrational fraction of the periodicity of the host lattice. The modulation is a result
of an instability of the high-temperature phase against a soft mode with a critical
wavevector g;, which is shifted by a small amount from a commensurate value g,

n=ac(1-4) A1 | )

where A is temperature-dependent. With decreasing temperature, A tends to zero
and the lost anslational periodicity is recovered at the ‘lock-in’ transition (Bruce
and Cowley 1978), where the crystal again becomes commensurate (C).

The frozen-in incommensurate modulation wave is not completely static, but un-
dergoes thermal fluctuations in phase and amplitude. In the plane-wave limit, where
the wavelength of the modulation wave is much longer than the interatomic distances,
a one-dimensional modulation wave can be described by a displacement u

u(z,t) = A(t)e'#®1, )
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The excitation spectrum (figure 1) consists of two modes (Zumer and Blinc 1981).
The first is the amplitudon branch and corresponds to oscillations of the amplitude
of the displacement, A(t) = A, + 6 A(t), and behaves like an ‘optic-like’ phonon.
The dispersion relation is

wi, =2¢(Ty - T) + Kk 3)

where & = constant and k = g — g;. The second is the ‘acoustic-like’ phason branch,
which corresponds to oscillations of the phase of the modulation wave, ¢{z,1) =
do{x) + §é(x, 1), with the dispersion relation

wly = AL + Kk? )

Here A, represents the phason gap (Bruce and Cowley 1978, Bruce 1980, Blinc e al
1985a, 1986), induced by the pinning of the modulation wave o impurities and by the
discrete lattice and commensurability effects. In the strong pinning limit (Blinc et al
1986}, which should hold for the nominally pure crystals, the phason gap is expected
to be temperature-independent, A, ¥ f(7). This is in contrast to the amplitudon
gap (the first term on the right-hand side of (3)), which for & = 0 depends on
temperature as A, o< (T} — T)1/2,

In nuclear magnetic resonance (NMR) the phason and amplitudon excitations
represent two kinds of relaxation mechanisms in the INC phase for nuclei with non-
zero electric quadrupole moment (Zumer and Blinc 1981). The phason branch is very
effective in the relaxation process since its frequencies can come in the range of the
nuclear Larmor frequency, thus providing a strong relaxation mechanism. In an ideal
INC phase with no defects, the phason frequencies would even become equal to zero,
reflecting the fact that the energy of an INC system is independent of the phase of the
modulation wave. In a real crystal, dislocations and other types of impurities induce
a finite phason gap, which in Rb,ZnCl, has been estimated (Blinc er al 1985a) to
be of the order 10! s™!. Phason-induced spin-lattice relaxation time T, is directly
proportional to the phason gap (Blinc ef al 1985a) and thus temperature-independent,

Ty = CT4/A,. (5)

Here I, is the phason damping constant. The amplitudon-induced spin-lattice relax-
ation time, on the other hand, reflects the temperature-dependent energy gap A 4 in
the amplitudon spectrum,

TiA =Cla/A, (©)

where A, = [2a(T; — T)]'/? in the mean-field approximation and ', is the ampli-
tudon damping constant. A 4 is of the order of a phonon frequency at temperatures
different from the paraelectric-INC transition temperature T;.

The technique for the separation of phason and amplitudon contributions to the
spin-lattice relaxation rate for quadrupolar nuclei (Zumer and Blinc 1981, Blinc et
al 1985a, b) consists of measuring the variation of spin-lattice relaxation time over
the inhomogeneous frequency distribution. This distribution is an inhomogeneously
broadened absorption spectrum Jimited by two edge singularities. 1t directly reflects
the spatial variation of the modulation wave since it modulates the local electric field
gradient (EFG}) and thus the electric quadrupole interaction of nuclei, lying on the
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Figure 1. A schematic representation of the iem- Figare 2. Static incommensurate NMR lineshape
perature dependence of the incommensurate soft f(w) and temperature dependence of splitting of
mode, the amplitudon and the phason. the edge singularities Aw for a linear expansion of

frequency versus displacement.

modulation wave. Each element of the EFG tensor at a particular nuclear site can
be expanded in powers of the nuclear displacements u{x) from the positions in the
paraelectric unit cell. The quadrupole perturbed ruclear resonance frequency of a
given nucleus w can also be expanded in powers of the displacements around the
paraelectric value wy,

w=wy+ aulz) + - )
The frequency distribution function, which determines the NMR lineshape, is in the

constant-amplitude approximation (Blinc 1981) for the static case given by (Blinc er
al 1985b)

constant
flw)= W (8)
By taking only the linear term in the expansion (7), replacing u(x) with w{=z) =
Acos ¢(=) and defining & = a A, we get for f(w)
Flw) = constant ©

{1 = [(w = wq) /@72

f(w) exhibits two edge singularities at w = +& (figure 2). The splitting between the
singularities increases with temperature as Aw = 2& o« A « (AT)P. The measured
NMR lineshape is a convolution of the frequency distribution function f(w) with the
homogeneous lineshape L(w),

Flw)= ‘/_00 flw ) L(w—w,) dw,. . (10)

The intensities of the edge singularities come from the nuclei that lie in the vicinity
of the extrema of the modulation wave. The nuclei that lie in the region where the
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amplitude of the modulation wave is small contribute to the intensity in the middle
of the spectrum. These two different ‘types’ of nuclei have different relaxation mech-
anisms. The nuclei near the extrema of the modulation wave lie in the region where
the amplitude fluctuations are large and are thus relaxed mainly via amplitudons. The
nuclei that lie far away from the extrema, where the amplitude is small, experience
mainly phason fluctuations and are thus relaxed by phasons. Measuring the effective
spin-lattice relaxation rate over the inhomogeneous frequency distribution thus en-
ables one in principle to determine separately the phason and amplitudon relaxation
contributions. In the simplest case, when we assume a local relation (Blinc 1981}
between the resonance frequency and the displacement, w; = w(u(z;)), and neglect
the contributions to the frequency shift from nuciei at positions other than z;, we get
for the effective spin-lattice relaxation rate (Blinc e al 1985b)

1 1 1
==Xt (1 -XH=. - 11
T T4 ( Ty : an

Here X = cos ¢(z) = (w—wy)/& represents the normalized frequency. Expression
(11) enables one to extract the phason T, and T, , contributions from the analysis
of the variation of the spin-lattice relaxation time over the inhomogeneous lineshape
(equation (9)). At the edge singularities X = £1 one expects to get the pure
amplitudon contribution T ,, which is temperature-dependent as

TiA < 1/(T - T)V? (12)

in the mean-field approximation. In the centre of the spectrum where X = 0, on
the other hand, one gets the pure phason contribution, which is independent of
temperature and directly proportional to the phason gap,

Ty =< 1/A, # f(T). (13)

By lowering the temperature through the incommensurate-commensurate transition
T, the phason relaxation time 7). should jump discontinuously to a much larger
value, which expresses the fact that there are no longer phasons in the commensurate
phase. The amplitudon relaxation time T, should, however, grow continuously
throughout the whole INC phase and match continuously the commensurate value
(figure 1),

In our previous experiments on Rb,ZnCl, (Blinc es a/ 1986) and [N(CH,),],ZnCl,
(Blinc er al 1985a) an attempt was made to resolve experimentally T), and T,
via equations (11) and (9). The analysis of variation of the effective T, over the
lineshape behaved qualitatively correctly. T, was the shortest in the middle of the
spectrum. This contribution was also temperature-independent, so that we belicve
that we measured the phason contribution T, , correctly. The T; value measured on
the edge singularities was slightly longer than T, 4. The difference was, however, only
a factor of about 2, which is much smaller than expected from the phason-amplitudon
picture. It was also temperature-independent, except in the vicinity of the para-INC
transition temperature 7;, where it showed a critical dependence proportional to (7}~
T)#. Both contributions are shown for Rb,ZnCl, in figure 3. The small difference
between the two relaxation times and the temperature independence of the relaxation

time, measured at the singularities, show that this relaxation contribution does ngt
|
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behave like the theoretically predicted amplitudon contribution 7, ,. T), should
grow continuously throughout the INC phase and smoothly match the T, value of the
commensurate phase at T,. We thus believe that the relaxation time thus determined
is not the pure T, contribution. Similar results were found in [N(CH,),],ZnCl,.
The measurements were made with the inversion recovery technique. The pulse
sequence used was a three-pulse w—-A-m/2-r-w-r-t sequence with a = /2 pulse
length of 5 us. Here the last two puises form an echo to overcome the receiver dead-
time problems and A is the relaxation delay. Some 20 relaxation delays were taken,
the longest delay being about 57;. No phase cycling procedure to compensate the
pulse errors was applied to the above sequence. Further analysis of the experimental
data to extract the 7T, values was made by 2 simple ‘ruler and eye’ technique on
semi-log paper. This accounts for the discrepancy by a factor of about 2 in the T,
values determined from these early measurements and the more precise ones to be
described below.

S0y oL
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60 - 8,
: vo ["Ru)=88.37MHz2 | Figure 3. Temperature dependence of spin-lattice
| relaxation time T}, measured on the central tran-
WE e N PARA sition 1/2 — ~1/2 of 37RDb in RbZnCl; at an
sy orientation a L Fly, Z(c, Hy) = 122°. In the
o, /‘ INC phase crosses represent the phason contribu-
LU TEey tion T}, and open circles represent T, measured
% sy at the edge singularities, where the amplitudon re-
V0T ey T, . fzxation is expected to be dominant. The inset
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shows the temperature dependence of splitting of
the edpe singularities.

To elucidate the question of why we do not get the amplitudon contribution cor-
rectly, we decided to make a high-resolution two-dimensional spin-lattice relaxation
study of 3’Rb in Rb,ZnCl,. The use of normalized two-dimensional (2D) contour
plots provides an extremely sensitive way to determine, and a convenient way to dis-
play, the variation of spin-lattice relaxation time over the absorption spectrum. This
2D technique will be described in the next section,

2. Two-dimensional spin-lattice refaxation in incommensurate systems

The use of a 2D relaxation technique with normalized contour plots (Millhauser and
Freed 1984) has been applied to deuterons (/ = 1) in liquid-crystalline polymers
(Schleicher er a/ 1989, 1990, Miiller ez al 1990). The name ‘owo-dimensional rejax-
ation’ is somewhat misleading, since this is not a two-dimensional NMR experiment in
the usual sense. There we look for the absorption of the spin system as a function
of two frequency variables. In a two-dimensional relaxation experiment, only one



7208 J Dolinfek et al

dimension shows the absorption as a function of a frequency variable, whereas the
second dimension shows the Fourier transform of a magnetization recovery curve.

In the 2D spin-lattice relaxation technique, applied to incommensurate systems,
one tries to get the variation of the spin-lattice relaxation time 7, over the inhomoge-
neously broadened absorption spectrum. 7 = T, (u) depends on the displacement u
of the given nucleus on the modulation wave. At the beginning of the pulse sequence
we prepare the spin system in a non-equilibrium state, e.g. we invert the population
with a single m puise. The system then relaxes towards equilibrium in the evolution
period t,,

dp _ 1
5, = —m(ﬁ’ ~ Peg) (14)

where p is the density operator. The solution at time t = ¢, is

P(11) = poq + [p(0) — pgl exp[~1, /T (u)]. (15)

The amplitude of the signal at the beginning of the detection period will be for
p(0) = =1,

A(ty,u) = I{1 ~ 2exp[-4, /Ty (w)]}. (16)

At the end of the evolution period we apply a ‘read” = /2 pulse and observe in the
detection period ¢, the normal free induction decay (FID). For ] > 1/2 this is a
quadrupole-perturbed Zeeman signal. The signal can be written as

S(ilaizau) = A(tl?u)g(t2)' (17&)

Here g(i,) represents the signal of all nuclei with distributed resonance frequencies
w = wy + & X. Here X = cos ¢(x) lies in the interval [—1,1]. The probability dis-
tribution G{.X) is obtained from the equation G(X)dX = n(z) dz = constant d =,
where n(zx) represents a constant density of nuclei along the modulation wave. The
signal g{1,) can be written as

bt - dX
g(ty) = /-1 expli(w, + 0X)1] exp("*z/Tz)mg- (178)
First we make a Fourier transform over the ¢, variable and get
Sy, wa, 1) = At u) Fw,) (18)

where F(w,) is given by equation (10). Then we subtract the spectrum S(f, =
00, wy, %) from the signal (18) and pet
1

— [(wg — wo) /@] 1172
Here we took for simplicity an infinitely sharp homogeneous lineshape L(w), thus
making F(w,) equal to f(w,) (equation (9)). Introducing X = (w, — w,)/G, we
make the second Fourier transform over the t, variable and get for the real part

1/ () 1 '
wi+ [1/T ()] (1 - X212

S(t),wy,u) = Kexp[-t;/T(uw)] a (19)

S(w), X,u) =

(20)
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Since Ty(u) is a function of X via u = Acos¢(2) = AX (equation (11)) we get
finaily

X?[T a4 (1=-X%)/T, 1

SenX) = oLy a-x Ly axyr 9

Equation (21) shows that the lineshape in the w, domain is a Lorentzian with a half
width at half height (HWHH) 1/T), at the centre of the spectrum X = 0 and HWHH
1/T; 4 at the edge singularities X = £1.

In a real experiment, performed on the central transition 1/2 — —1/2 of
STRb(I = 3/2) nuclei, we used a three-puise sequence 7t~ /2—r—m—r—t,, where
the second and third pulses form an echo sequence to overcome the rcceiver dead-
time problems. The detection period ¢, thus starts at the top of the echo. The 7 /2
pulse length was 5 ps. A suitable phase cycling was used to minimize the pulse errors.
The first = pulse was cycled in steps +X and —X and the signals added in order
to get the magnetization immediately after the pulse pointing exactly along the —Z
direction. The last = pulse was also cycled in steps +.X and —X and the signals
co-added in order to get rid of the remaining FID after the last pulse. Cyclops phase
cycling (Hoult and Richards 1975) was used in addition to minimize the errors of the
quadrature detection, so that one complete phase cycle involved 16 steps.

- Since the signal is amplitude-modulated only with no phase modulation in the
t, domain, it is possible to get a pure absorption 2D spectrum by applying a real
Fourier transformation to the ¢, domain. The two copies of the absorption spectrum
at Zw, are both centred at w, = 0 and fall exactly on each other, so there is no
need to split them by the use of the ‘time-proportional phase increments’ (TPPI)
method (Bodenhausen et @/ 1980). The use of the phase-sensitive, pure absorption
2D spectrum is an essential point in a study of the variation of 7| over the spectrum,
since the 2D spectrum is not distorted as it is in the magnitude or phase-sensitive
mixed-phase mode. After both Fourier transformations, a normalized contour plot
was made (Milihauser and Freed 1984) by dividing all slices along w, by the centre
slice at w;, = 0. The centre normalized contour thus becomes a straight line of
value 1. The deviation of other contours at w, # O from the straight lines is a very
sensitive tool to observe the variation of 7 over the absorption line. Here it should
be pointed out that this 2D normalized contour plot technique yields in principle
no additional or more precise information to what is obtained in a conventional 1D
spin-lattice relaxation measurement. It represents a convenient way to display the
variation of T over the lineshape. Its high precision is due to the fact that we are
using a large number (e.g. 256) of closely spaced relaxation delays, with the longest
delay extending up to many (e.g. 25) times the longest relaxation time constant met in
the experiment. The high sensitivity is, on the other hand, due to the normalization
procedure—division of all slices along w, with the central slice at w; = 0. Such a
division is more sensitive to the variation of 7 over the lineshape.

3. Results and discussion

A 2D spin-lattice relaxation study has been performed on the central transition
1/2 — —1/2 of 3'Rb in Rb,ZnCl, at an orientation a« L H, and £(c, H,) = 122°.
The crystallographic axes are taken in a system in which the b axis becomes the
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axis of spontaneous polarization below T, At this particular orientation it has been
shown (Blinc et ol 1986) from the temperature dependence of splitting of the edge
singularities that the expansion of resonance frequency in powers of the displace-
ments {equation (7)) is well described by retaining the linear term only. Such a
lincar expansion gives the same results (Blinc e af/ 1985b) in the Jocal and non-local
approximations. The term ‘local approximation’ is used for the case when the fre-
quency of a given nucleus depends only on the incommensurate displacement of the
resonating nucleus and the displacements of the ions moving in phase with it. This
approximation is valid only when the wavelength of the modulation wave is large
compared to the size of the region from which comes the dominant contribution to
the NMR frequency. When this condition is not fulfilled, the relation between the
resonance frequency and the nuclear displacements becomes non-local, ic. a given
nucleus ‘sees’ in principle all the ions in the crystal. The chosen orientation thus ¢n-
abled us to treat the problem quite generally. The measurements were performed at
three different temperatures. The first was taken at T = 28 °C, which is one degree
below the para—incommensurate transition temperature (7; = 29°C). On figure 4{a)
a 2D contour plot (not normalized) of the spectrum at T = 28 °C is shown, where the
w, domain shows the normal incommensurate lineshape and the w,; domain shows
the Fourier transform of the magnetization recovery curve. The cross sections w, = 0
and w, at the position of the left edge singularity are shown above and on the left
side of the contour plot respectively. The normalized contour plot (the contour plot
from figure 4(a) with all slices along w, divided by the central slice w;, = 0) i
shown on figure 4(b). Figures 5(a, b) and 6(a, b) show the corresponding spectra at
T =13.7°C and T = -22°C, the last one already lies in the temperature regime
where the plane-wave approximation starts to break down and the description of a
soliton wave starts to become appropriate. In all three cases, the number of relaxation
delays (number of points sampled in the ¢, domain) was 256, covering the range up
to 320 ms, which is around 25 times longer than the longest time constant met in the
experiment. On the normalized contour plots the contours are drawn at 100, 85, 70,
35, 40, 25 and 10% of maximum height. The maximum variation of the spin-lattice
relaxation time over the lineshape is given by the total span of the contours at certain
height in the w, dimension. As can be seen from figures 4¢b), 5(b) and 6(b), this
variation is the same for ali three temperatures. By making a theoretical fit (figure 7)
with equation (21) we get the ratio T, ,/7;, = 3.01, so that the relaxation time,
measured at the edge singularities, is three times longer than the one in the middle
of the spectrum.

So far the experimental data of the variation of relaxation time over the lineshape
did not involve any mode! calculation or ansarz for fitting the T, curves. We did not
even have to know the absolute value of any of the time constants involved. The total
variation of T} over the lineshape is thus a pure experimental outcome and $o the
above-described normalized contour plot 2D method can be treated as the ‘honest’
way for such studies.

The value of T, is found from the linewidth at baif height in the w, domain at
such an w, position that the normalized contour plot is the broadest. For T = 28°C
we get T, = 4.6 ms, for T = 13.7°C, T, = 4.5 ms and for T" = —22°C,
que, = 4.2 ms.

These precise measurements thus gave results on the total variation of T, over
the mcommensurate lineshape, which are not much different from the early ones
(figure 3), which were obtained by a simpler technique. Two experimental facts are



2D NMR relaxation study of incommensurate Rb,ZnCl,

-2
-.]m
m1/2Tl',
-4 € izl
- 100
~200
1 1 1 1 1
T0OC 5000 € -500C -10000
wy/ 2w [Hz]
b)
--200
0%
--100
Wy /2
4 & [Hz]

0060 S 0 -5000 ~10000
wy/ I [Hz]

Figure 4. (a) A 20 contour plot of 3"Rb ‘spin-
lattice relaxation’ spectrum in RbaZnCly at T =
28°C and w(®"Rb) = 88.34 MHz. The ws
domain shows incommensurate NMR lineshape and
the wy domain shows the Fourier transform of
the magnetization recovery curve. (ross sections
w) = 0 and wy al the position of the edge singu-
larity wz /2 = 3500 Hz are shown above and on
the left side of the contour plot respectively. (b)
Normalized contour plot at 7' = 28 °C (same plot
as above but all cross sections along w, divided by
the central cross section w; = 0) Contours are
drawn at 1009 (centre line), 83, 70, 55, 40, 25 and
10% of maximum height.

7211
| M
T=13.7°¢ -0
f =100
wy/2n
10 h2)
< 100
- 200
L 1 [ (| 1
000 500 0 -500 -i0000
wy/ 2 | Hzl
bj
+-200
--100
wy /2
1 0 [Hzl
= 08
20
] e 1] ] L
00 500 6 -R00 -1000
wy /2 [Hz}

Figure 5. (a) A 2 contour plot of 3Rb ‘spin-
lattice relaxation’ spectrum in RbyZnCly at T =
13.7°C and vy (¥* Rb) = 88.34 MHz. The w; do-
main shows incommensurate lineshape and the w)
domain shows the Fourier transform of the magne-
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left side of the contour plot respectively. (6) Nor-
malized contour plot at T = 13.7°C (same piot
as above but all cross sections along we divided by
the central cross section wy = 0). Contour levels
are the same as on figure 4(4).

now in favour of the statement that, with the method of measuring the variation of
T, over the lineshape for the quadrupole-perturbed Zeeman lines, we measure the
phason relaxation contribution correctly, but we do not measure correctly the ampli-
tudon relaxation contribution. The first fact is that the phason contribution 77, is
short, temperature-independent and jumps at the INC—commensurate transition to a
high value, since the phason mode is no longer present. The second fact is that at
the edge singularities we obtain a 7, that is also temperature-independent and only
three times Jonger than Ty,. This obviously cannot be identified as the amplitudon

relaxation time T, 4, since T; , would behave as T, , o (Ty— T)!/? and go smoothly
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the ratio

lattice relaxation’ spectrum in RbyZnCly at T =
=22 °C and vp (3’ Rb) = 88.34 MHz. The w; do-
main shows incommensurate lineshape and the w,
domain shows the Fourier transform of the magne-

computed from equation {21) for
T14/T14 = 3. Contours are drawn at 100% (cen-
tre line), 85, 70, 55, 40, 25 and 109 of maximum
height. Here X = (wa — wg) /& is a normalized

tization recovery curve, Cross sections w; = 0
and w2 at the position of the edge singularity
wp /27w = 10 000 Hz are shown above and on the
ieft side of the contour piot respectively. () Nor-
malized contour plot at T' = —22°C (same plot
as above but all cross sections along wq divided by
the central cross section w) = 0). Contour levels
are the same as on figure 4(5).

wy {requency.

through the INC phase to a commensurate value. It is obvious that some other relax-
ation mechanism bypasses the amplitudon mechanism. This could be explained by the
following simplified consideration. If the system of nuclear spins turns out of equi-
librium, then those nuclci that see the phason fluctuations relax towards equilibrium
with time constant T} ,. Except close to Ty, T}, is much shorter than T} 4. The nuclei
that are relaxed by amplitudon fluctuations see the phason-relaxed nuclei already in
thermal equilibrium, ie. they behave similarly to paramagnetic impurities. The mag-
netic dipolar coupling between both types of nuclei then transfers the polarization
from phason-relaxed to amplitudon-relaxed nuclei in a cross-relaxation process. This
bypass relaxation mechanism would imply that the relaxation time of the nuclei, which
are supposed to be relaxed nominally by amplitudons, would behave with temperature
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in the same way as 7, with its value close to T}, as is also seen in the experiment.
For the cross-relaxation processes to occur frequently, one needs a considerable over-
lap between the resonance lines of coupled nuclei. T see this in our case, we made
a 2D ‘separation of interactions’ experiment (DolinSek 1991). Here we get in the w,
frequency dimension a normal inhomogeneously broadened INC lineshape. This line-
shape is a convolution of a static frequency distribution function f(w) {equations (8)
and (9)), which describes the distribution of quadrupole-perturbed Zeeman frequen-
cies of isolated nuclei, with the homogeneous lineshape L(w) (equation (10)). The
homogeneous lineshape L{w) is determined by the homonuciear dipolar interaction
and is obtained in the w, domain. L(w) determines the overlap between nuclei
at different positions in the frequency distribution function and determines the effi-
ciency of the cross-relaxation process. Our measurement was made at 7 = 16.2°C
(figure 8). For the inhomogeneous lineshape we found a full width at half height
(FWHH) of 13 kHz and for the homogeneous linewidth an FWHH of 500 Hz. Since the
frequency distribution function f(w) is a continuous function of different resonant
frequencies, the above overlap could provide a ‘bridge’ through all parts of the inho-
mogeneous Jineshape and enables the cross-relaxation process to transfer polarization
from the centre of the line towards the edge singularities.
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Figure 8. Two-dimensional ‘separation of interactions’ spectrum of 37Rb 1/2 — —1/2
transition in RbaZnCly at an orientation a L Hy, Z(c, Fp) = 122° and T" = 16.2 °C.
The w2 domain shows the inhomogeneously broadened incommensurate lineshape and
the w) domain shows the homogeneous lineshape, determined by the homonuclear
dipolar interaction of Rb nuclei. The projections on both frequency axes are also shown.

A theoretical description of the cross-relaxation phenomenon mentioned above
requires first a detailed consideration of the recovery of magnetization towards equi-
librium for spin I = 3/2 for the case of pure quadrupolar relaxation. This should
describe appropriately the pure phason and pure amplitudon relaxations, since it is the
EFG tensor that becomes time-dependent by the phason and amplitudon fluctuations.
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The energy levels of a quadrupolar nucleus [ = 3/2 are in general not equidistant
and the spin-lattice relaxation cannot be described by a single relaxation rate, but
rather by two transition probabilities W} and W) describing the transitions of
the magnetic quantum numbers Am = +1 and Am = =2 respectively. We write
down the kinetic equations describing the time development of the deviations Ay
of the level populations n; defined as n;, = n;, + An,;, where n;, represents the
thermal equilibrium population of the ith level. The four kinetic equations (Abragam
1961, Zumer and Blinc 1981) can be solved analytically. When the central transition
1/2 — —1/2 is irradjated only and the +3/2 levels stay unperturbed by the RF
excitation ficld, we have the initial conditions after the pulse

My2{t = 0) = n_y (1 =0} (saturation of central transition)

Anyap(t=0)=0 (unperturbed £3/2 levels).
For that part of the magnetization that corresponds to £1/2 levels only, we get

(M2 = Naip2de = (M2~ N_ys2)0 = Alexp(—2W1t) 4 exp(—2WEht)] (22)

where A is a normalization constant. This yields in general a two-exponential mag-
netization recovery. Only for the case W(!) ~ W(?) do we get a single-exponential
recovery and an effective T, can be defined. The two transition probabilities (1)
and W<} depend strongly on orientation of the crystal with respect to the mag-
netic field. One can compute W{1) and W2 from the general theory of relaxation
(Slichter 1980). For W(l) one gets

W = 12 (%)zfm (AT, (0) AT, (D F AT..(0)AT.. ()] exp( =it dt
(23)

and for W2

2 o0 .

+BT,,(0)AT,, (D) } exp(~2iwot) dt. (24)

Here £ = e2Q/41(21 - 1), T;; denotes an element of thc EFG tensor, wyg is the
nuclear Larmor frequency and the bar represents an ensemble average. At a certain
orientation, the magnetization recovery originating from the pure phason or pure
amplitudon relaxation mechanism should be cither monoexponential or biexponen-
tial, depending on the ratio W) /W), irrespective of where on the lineshape we
measure it. If in the centre of the INC lineshape we obtain a monoexponential re-
covery, the same should hold everywhere on the absorption line, since the same EFG
tensor elements contribute to relaxation. In our case we found in the middle of the
spectrum a magnetization recovery that can be perfectly fitted by a single exponent
(figure 9(a)). Thus at the chosen orientation one of the two transition probabilities
W) is dominating the other or they are accidentally very close to each other. We
can also define an effective spin-lattice relaxation time 7},, which in this case (at
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T =-22°C) is equal to T}, = 4.2 ms. On figure 9(b), the magnetization recovery
function of one of the two edge singularities is shown together with the attempt to
fit it with a monoexponential function. The fit is obviously bad. This deviation from
monoexponentiality does not come from the quadrupolar relaxation, since in that
case it should be present also in the other parts of the INC spectrum. The observed
non-monoexponentiality is introduced by the cross-relaxation mechanism, which tries
to relax the edge singularities via the phason-relaxed part of the absorption line. This
we can describe by writing two coupled equations for the relaxation of phason- and
amplitudon-relaxed nuclei,

ALY 4141 = ~(1 T, )L, )e = Tog) (250)
s = Y (- 1) - W= 1) ()

where {I,), = 3 ;{Ii), and index k runs over all phason-relaxed nuclei, to which
an amplitudon-relaxed nucleus r is coupled in a cross-relaxation process. Here TF"
represents the cross-relaxation time for the transfer of longitudinal spin polarization
from the phason-relaxed spin & to amplitudon-relaxed spin ». In equation (25a)
we neglect the back’ cross-relaxation since the phason relaxation mechanism is the
dominant one. The amplitudon-relaxed nuclear spins see the phason-relaxed nuclei
much like ‘paramagnetic impurities’. The solution of equation (25a) is for the initial
condition (I, (t = 0)}, = —1I,, the standard relation

{(I.(1)) g = Lopll — 2exp(—t/T,,)]. (26)
The solution of equation (25b) can be found with the ansazz
(2t a — 54 = [{T7(0)) 4 — Iga) exp(—1/T, 1) f(2). @n

When the initial condition is a complete inversion of both types of spins (of the same
nuclear species) we get

(15(0))45 - ngs = —215'} =-21,
{I7(0)} 4 — Igq = —2I3, = =21,

out of which we find the initial condition f{0) = 1. The magnetization recovery
function for (I7(t)), becomes, dropping index n,

I, - (I(t 1 1
A O = eocma [+ g/ (- i)

1 1
xiexp|l—f|——-—1i| -1 ]] 28
{ [ (Tw Tm)] } @
From equation (28) we can get an approximate result for the initial part of the
magnetization recovery function by expanding the term exp[—#(1/Ty, — 1/T; ,)] in
series and retaining the linear term only., Writing 3,(1/T¥) = 1/T% we get
Iy = (L (1)) a) /20y = exp(~t/T} 4 )(1 = t/T5T) = exp[~t(1/ Ty 4 + 1/TE7)]
~exp(~t/TT)



7216 J Dolinsek et al

and the magnctization of the amplitudon-relaxed nuclei grows towards equilibrium
with the effective cross-relaxation time Tg“, rather than with the amplitudon relax-
ation time T ,. The magnetization recovery function of the edge singularities can be
well fitted with equation (28) (figure 9(c)). The fitting parameter 7o /7, = 2.88
agrees rather well with the experimentally determined total variation of T, over the
lineshape, which is equal to 3. The other fitting parameter T, , /T), does not affect
the fit much and is thus determined rather imprecisely as a factor of around 10. This
might also be affected by the repetition time of the pulse sequence, since for precise
measurements one should repeat the sequence after as many as around 100 times the
longest time constant of relaxation, for a proper thermal equilibrium to be reached,
before a new sequence starts. It is interesting to compare the above results to the
results on pure 3°Cl nuclear quadrupole resonance (NQR) (Chen and Ailion 1989,
Milia and Papavassiliou 1939). There they have shown that in the INC phase T\, is
temperature-independent, whereas T, , is temperature-dependent, but its dependence
on temperature is weaker than the theoretically expected T, 4, x A, o (T} — T)/2
and does not smoothly match the 7| value in the commensurate phase at the lock-in
transition at T,.. There it exhibits a jump of a factor of about 3 in a narrow tempera-
ture interval. Close to T, the ratio T, 4 /7), amounts to a factor 14, which is larger
than in the 7Rb case shown in this paper. In the case of 3°Cl NQR cross-reiaxation
(due to its dipolar origin) should be less effective than in the 37Rb case since the
cross-relaxation rate is proportional to the square of the dipolar coupling constant,
and thus to the fourth power of the nuclear magnetic moment. The gyromagnetic
ratio of the 2*Cl nucleus is 3.3 times smaller than that of the **Rb nucleus, which
would make the cross-relaxation rate smaller by a factor of about 120. This is, in our
opinion, the reason for a stronger temperature dependence of T) 4 in the 3C] NQR
case.

4. Conclusions

We have shown that a 2D spin-lattice relaxation technique allows for a precise deter-
mination of a variation of the spin-lattice relaxation time over the inhomogeneously
broadened incommensurate lineshape. In the middle of the lineshape, we obtain the
phason relaxation time, whereas the edge singularities, which should be relaxed by
amplitudons, are relaxed via a cross-relaxation process to the phason-relaxed part of
the spectrum. This process bypasses—except close to T;—the amplitudon relaxation
mechanism. This explains the fact that the relaxation time of the edge singularities
follows the temperature behaviour of T ,. The experimentally obtained value for the
total variation of T over the lineshape, which is a factor of 3.01, agrees well with
that obtained from a theoretical model for the cross-relaxation between amplitudon-
and phason-relaxed parts of the spectrum, which yields a factor of 2.88.

We are now able to make a more precise estimate of the phason gap A ,, which
was in our earlier paper (Blinc et a/ 1985a) determined from 3"Rb NMR in Rb,ZnCl,
from the ratio

T1¢>/T1A = A¢/AA-

There we have used an independently determined amplitudon gap A 4 (Petzelt 1981)
and obtained from the measured values of T'; and T, , an estimate for &, as 1011~
1012 s=1, As it now turns out, T, , was in fact not properly determined in view of
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Figure 9. Magnetization recovery curve
M(t) of 3TRb 1/2 — ~1/2 transi-
tion in the incommensurate phase of
RbaZnCly at T = -22°C. Dots rep-
0 resent experimental points and the full
* tms] curve is a fitted curve. (@) M(t)
i " taken at the centre of the inhomoge-
neously broadened NmR lineshape, where
CI the relaxation is caused by the phason
7k 1 fluctuations. The full curve represents
a fit with a monoexponential function
exp(—t/Ti4) (T = 4.2 ms) (&)
1k M (£) taken at one of the two edge sin-

gularities together with the attempt to
fit it with a monoexponential function of
the form exp(—t/T}). The fit is not
0r TR R R good. (c) The same magnetization re-
| ; | covery function as in (), but fitted with
¢ 10 80 170 160 equation (28). The ft is now good with

tms] T3 [Ty = 2.88.

M{t) [arb. units )

M (1) [orb. units]

the cross-relaxation process T¢T. Since we have shown in this paper that the real
T} 4 is about four times longer than 727, we now get a corrected estimation for the
phason gap to lie in the range A, ~ 10'°-10*! s~!. The correction factor and the
effectiveness of the cross-relaxation process are of course different for different nuclei
with different mapnetic moments and different crystal structures. For 'Rb the effects
are much larger than for **K or 2°Cl. This also explains the fact that smaller phason
gaps were determined from 2°Cl than from 57Rb 7} data in the same crystal.
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